Extending Data Processing Capabilities of Relational
Database Management Systems.

Igor Wojnicki
University of Missouri — St. Louis
Department of Mathematics
and Computer Science
8001 Natural Bridge Road
St. Louis, MO 63121-4499
phone: (314) 516-6353
fax: (314) 516-5400
e-mail: wojnicki@arch.umsl.edu

Abstract Relational Database Management Sys-
tems proven to be robust and efficient for storing
and retrieving data. However, they have limita-
tions. Sophisticated data processing (a rule-based
processing with inferences) is possible but hard to
implement. To overcome these problems, several
methods have been developed. Data can be processed
by a client application (a client-side processing)
or by a RDBMS server (a server-side processing).
These methods overcome the main limitations, but
such solutions are not flexible, hard to modify or al-
ter. This paper presents a novel approach, a case of
server-side processing with the use of a declarative
language. A program, written in Prolog, is decom-
posed into relations, and stored in the database. It
can be easily managed, modified or altered. It has
access to database relations, and it also has an abil-
ity to create relations on demand, so-called dynamic
views or Jelly Views. Jelly Views serve as tempo-
rary relations holding data obtained as the result of
the program. The communication interface between
the client and the database is preserved, it is still

SQL.

Keywords: RDBMS, deductive

database, inference

Prolog,

Cezary 7. Janikow
University of Missouri — St. Louis
Department of Mathematics
and Computer Science
8001 Natural Bridge Road
St. Louis, MO 63121-4499
phone: (314) 516-6352
fax: (314) 516-5400
e-mail: janikow@arch.umsl.edu

1 The Relational Model

The relational model represents a database as
a collection of relations [1, 2, 3]. Each relation
is characterized by its name and attributes. A
set of attribute values for a certain relation is
called a tuple. A value of the attribute is de-
termined by the attribute domain (data type).
A domain is a set of atomic (indivisible) val-
ues. A relation schema is defined as a relation
name (R) and a list of attributes(4;):

R(A1,Ag,..., Ap)

The domain is defined for each attribute
dom(A;). A relation state (or just relation)
of the relation schema R(Aj, Ao, ..., Ay), de-
noted by r(R), is a set of tuples t1,..., ¢,
where each tuple is an ordered list of n values
t =<wi,...,v, >, and each value v; is an ele-
ment of dom(A4;) or null (does not exist). The
values in tuple t are referred to as t[A;], so by
the attribute’s name. Relations represent facts
about entities or facts about relationships be-
tween relations. A relational database schema
is a set of relation schemas: S = Ry,..., R,

2 RDBMS Boundaries

Each Relational Database Management Sys-
tem uses two languages: Data Definition Lan-

guage for defining a relational database schema
and Data Manipulation Language for storing
and retrieving data.

SQL has evolved as a high level, robust and
compact DDL and DML query language. The
power of SQL lies in its declarative nature.
A query can be expressed in a logical form
with little care for procedural processing. It
gives meaningful and highly abstractive way
for querying. But here is a limitation. SQL
offers an abstract interface allowing to build so-
phisticated queries, but more complicated data
processing is out of reach. In particular, the
following disadvantages can be identified:

e lack of more sophisticated, i.e. rule-based
data processing,

e a query can not be recursive,

e searching for acceptable solutions is lim-
ited.

Rule-based processing requires rules, usu-
ally the a form of decision trees. Decisions
are based on information acquired from a
database. At each node of such a tree, the
database is queried and the replay is compared
with appropriate values (or set of values) in the
node. Depending on the comparison, the next
node of the tree is taken and the process contin-
ues. Rule-based processing is a core part of the
most Expert and DDB (Deductive Database)
systems [4, 5, 2].

Recursive queries, in general, regard search-
ing for data which is stored in some tree-like or
graph-like way. The Traveling Salesman Prob-
lem can be an example. A relation holds infor-
mation about distances between neighboring
cities, there is no data redundancy. A relaxed
question is: find the shortest path between two
given cities. If the question was asked with
known number of cities on the path, it would
be issued as an ordinary query. However, usu-
ally the number of cities is not known in ad-
vance. SQL3 (known also as SQL99) standard
allows recursive queries. However, this feature
is very rarely implemented (it is implemented
in DB2 [6]).

The Acceptable Solutions problem is another
application where RDBMS can not be applied
directly. It can be also called a Reverse Ag-
gregation. Let’s use the same Traveling Sales-
man Problem. The question would be: find all
paths shorter then some value. Each path is a
list of cities. As a result, the replay would be a
set of paths. Each path would be shorter than
the given in the query value.

There are several applications where these
problems appear:

e phone billing: this usually involves so-
phisticated rule-based processing, cost of
connections is calculated basing on differ-
ent variables: day time, number of active
phone numbers of the customer, calling
plan, length of the call etc.; rules are sub-
ject to change,

e flight planes, trip planning (the Traveling
Salesman Problem in general),

e budget planning, alternative flight/trip
routes.

These problems can be tackled using either
client-side processing, or server-side processing
with functions.

Client-side processing is based on serializa-
tion of queries and taking actions accordingly
to partial replies. The process is as follows: the
client sends a query, the RDBMS replies, de-
pending on the reply the client sends another
query. The logic is usually hard-coded into the
client. There are a few drawbacks of such a
solution:

e the inference process involves many
queries,

e queries are not optimized by the RDBMS
(series of simple queries and travel
through a decission tree instead of few
more complex queries),

e with the decision tree hard-coded into the
client, it is hard to modify the logic,

e only dedicated client software is able to
conduct the inference process, and thus

the principle of a database as a universal
source of information fails.

Such a solution is implemented in expert sys-
tems, with an external RDBMS data source.
Server-side processing seems to be more ro-
bust, but there is a need for support from
RDBMS in the form of additional languages,
usually procedural ones. Using such a lan-
guage, a function can be written. A user query
can use such a function as a data-source. Com-
paring to client-side processing, the number of
queries is reduced, a function is stored and pro-
cessed by the RDBMS so it is optimized, and
the database remains an universal source of in-
formation. Still, there are a few drawbacks:

e the function’s language is RDBMS spe-
cific, can be used only for dedicated
RDBMS,

e logic, i.e. decission tree, is hard-coded
within the function code, inflexible, hard
to modify,

e the input and output for the function have
to be known when the function is defined.

3 Relational Model vs Logic

In general, knowledge processing involves two
kinds of data: extensional and intensional.

Extensional knowledge is just bare facts,
while intensional defines relationships among
facts. Logic can be used to express extensional
and intensional knowledge as well [7]. To for-
malize syntax for writing logical sentences, the
alphabet has to be stated. Data (or knowl-
edge) is stored as predicates. A predicate p is
defined as a symbol denoting appropriate rela-
tion among n number of arguments:

p/n

where n is called its arity. A fact compound
of n values, concerning predicate p is named a
simple clause:

plai,...,an)

where, < aq,...,a, > is a tuple (ordered list of
values). There is an analogy between a relation
and a clause. (in terms of the Relational Model
see Sec. 1) Both of them describe facts using
tuples. In the case of the Relational Model, a
value in the tuple can be referenced using ap-
propriate attribute name or its position, while
for the Logic Programming only position can
be used. Concluding, any Relational Model tu-
ple can be represented as a simple clause, so
compatibility between the relational databases
and logic programs has been stated.

Furthermore logic programs can be con-
structed with so-called complex clauses. Such
a clause doesn’t express facts explicitly, but
defines relationships among them (intensional
knowledge), with a conclusion.

COTL(Cl,...,Cn) — Cl(Ci...,Cj) Al
DNy e (Cy .., C)).

Here, con is the concluding clause with arity
n; /A are logical operators joining predicates
¢q (preconditions). Predicates such as ¢, are
matched against their clauses. If such a match
is found, appropriate facts are set and the con-
cluding tuple is passed as a new fact. As a
result, a non-deterministic conclusion can be
drawn; a single complex clause can generate
multiple conclusions, and new facts. Function-
ality of complex clauses is not supported by the
Relational Model.

Logic Programs provide a uniform language
for representation of databases and even more,
enabling additional expressive power in the
form of intensional knowledge.

4 Logic Programs in RDBMS

The main proposed improvement to RDMBS is
adding capabilities to store and process inten-
sional knowledge, along with the extensional
one. The inference engine will be coupled
with the data source, and available to a client
through standard SQL queries [8]. This ap-
proach addresses the major disadvantages of

current RDBMS (see Sec. 2): limited rule-
based processing, recursive queries, searching
for acceptable solutions.

To keep the architecture flexible and easy to
modify, the following assumptions are taken:

e logic programs are used to construct a
view called a Jelly View,

e the view is created on demand,

e the query language is preserved, the view
is transparent — not different from other
RDBMS views.

As a result, RDBMS has its functionality ex-
tended toward those of deductive databases
(DDB).

The chosen syntax is that of the Prolog lan-
guage. This provides all necessary mechanisms
for declaring intensional knowledge, and it also
provides some features of procedural languages
that allow to control the inference process. In
turn, this allows to create logic programs and
optimize them. A Prolog language program
is similar to pure logical programs, with some
technical differences [9, 7] (see Sec. 3). To ac-
complish the coupling of the Prolog program
with RDBMS, that program must be repre-
sented in a way complying with the Relational
Model, including the normal forms. There are
following challenges to face:

e Internal Matching — matching between
relations and clauses, enabling access to
data (extensional knowledge) from the
logic program,

e FEaxternal Matching — stating the goal for
the prolog program to generate a Jelly
View,

e Logic Program itself, which should be de-
composed to meet the normal form re-
quirements.

These challenges can be met by the three
main parts of a Prolog program: extensional
knowledge (Internal Matching), intensional
knowledge (Logic Program) and goal (External
Matching).

Let’s define a behavior of the system. All
queries requiring a Jelly View have to be pro-
cessed. Once such a query appears (detected
by Ezternal Matching routines), the Logic Pro-
gram should be built. All extensional data is
available to the Logic Program through the In-
ternal Matching mechanism. Then the infer-
ence engine generates the necessary Jelly View.
Upon the completion of the query, all dynamic
data (the Jelly View) is assumed to be no
longer valid and thus it is removed. If a query
doesn’t refer to Jelly View, it is passed on to
the RDBMS, and the response is passed to the
user. In other words, the system in transparent
to the user.

5 Decomposition

Decomposing the three main components of
a Jelly View: Faxternal Matching, Internal
Matching and Logic Program, is a crucial prob-
lem. They must comply with the relational
model. One possible approach is illustrated in
the ER diagram in Fig. 1.

Ezxternal Matching matches a relation name
and a clause name. If a relation name is found
in table-clause.table, a Jelly View for this
relation is generated. The Jelly View has at-
tributes defined by the entity argument. To
generate the view, the clause name is speci-
fied (table-clause.clause) and subsequently
used as goal for the inference engine. The ar-
ity of the goal predicate is calculated from the
number of arguments (the relation argument).

Internal Matching is a bridge between the
inference engine and the RDBMS, it handles
extensional knowledge. A predicate can be
mapped on a relation. If the inference en-
gine requests a simple clause dealing with the
predicate named clause-table.name of ar-
ity clause-table.arity, the clause is gen-
erated from the data stored in the relation
clause-table.table. This is the way exten-
sional knowledge stored in the RDBMS is ac-
cessed by the inference engine.

The goal for the logic program has to be
specified. It is held by the clause relation.

EXT Mat chi ng

I NT Mat chi ng

ar gument

has M cl ause-tabl e
,7,7,;7,;7,;7,;7,;7,;7,;7,’J
ar gunent

| ogi cal operator

Pr ogr am

Figure 1: External Matching, Internal Matching and Logic Program Entity Relationship Diagram.

Each logic program consists of certain num-
ber (one or more) of complex clauses. Each
table-clause is an ordered list of complex
clauses (the relation clause). A single clause
has a number of named arguments. This clause
is either a concluding clause or a precondition
predicate. These are not differentiated because
they are represented by the same relation. As
in Prolog, such a construct always has a logi-
cal operator on the right (the relation logical
operator). The concluding clauses and pre-
condition predicates are not distinct in terms of
decomposition., preconditioned relationship
is used to assign preconditions to the conclud-
ing clause. As shown, any complex clause de-
fined in Sec. 3 can be decomposed into such
entities.

6 Conclusions

Extending knowledge processing capabilities of
RDBMS makes them applicable to new do-

mains and situations. Combining speed and ef-
ficiency of a RDBMS with a server-side declar-
ative programming gives a powerful, robust,
and flexible environment, not only for data
storage and retrieval, but also for sophisticated
processing such as drawing conclusions and dis-
covering new knowledge. A client application
issues ordinary SQL queries, all the processing
is done on the server side. Intensional knowl-
edge (rules) is stored within RDBMS as a de-
composed Prolog program. This architecture
makes the system flexible and transparent to
the client. Any rule can be altered individually,
with changes applied only to appropriate rela-
tions, using ordinary SQL queries. This can be
done without altering any client application.
As a result, RDBMS can have DDB function-
ality, preserving communication methods and
the Relational Model.

This approach can have applications in
many fields of Computer Science, including:

e Data Mining and Data Discovery,

e rule systems, e.g., telephone billing sys- [9] Michael A. Covington, Donald Nute, and
tems, tax systems, André Vellino. Prolog programming in

depth. Prentice-Hall, 1997.
e Expert Systems, including those self-

teaching (RDBMS could now posses Ex-
pert System capabilities),

o Artificial Intelligence, Knowledge Discov-
ery tools.

References

[1] E. F. Codd. A relational model of data
for large shared data banks. CACM,
13(6):377-387, 1970.

[2] Ramez Elmasri and Shamkant B. Navathe.
Fundamentals of Database Systems. Addi-
son Wesley, 2000.

[3] Jeffrey D. Ullman and Jennifer Widom. A
first course in Database systems. Prentice-
Hall Inc., 1997.

[4] Marcia A. Derr, Shinichi Morishita, and
Geoffrey Phipps. The glue-nail deductive
database system: Design, implementation,
and evaluation. VLDB Journal, 3(2):123~
160, 1994.

[5] Raghu Ramakrishnan, Divesh Srivastava,
S. Sudarshan, and Praveen Seshadri. The
CORAL deductive system. VLDB Jour-
nal: Very Large Data Bases, 3(2):161-210,
1994.

[6] Srini Venigalla Netsetgo. Expanding re-
cursive opportunities with sql udfs in db2
v7.2. Technical report, International Busi-
ness Machines Corporation, 2002.

[7] Ulf Nilsson and Jan Matuszynski. Logic,
Programming and Prolog. John Wiley &
Sons, 1990.

[8] Igor Wojnicki and Antoni Ligeza. An in-
ference engine for rdbms. In 6th Interna-
tional Conference on Soft Computing and
Distributed Processing, Rzeszéw, Poland,
2002.

